Part Number Hot Search : 
TDA1602 SIEMENS 74HC7 TC124 103KA SPEAR 4946G XL6005
Product Description
Full Text Search
 

To Download IRFPS40N50L Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRFPS40N50L 07/18/03 www.irf.com 1 smps mosfet hexfet   power mosfet super to-247ac v dss r ds(on) typ. trr typ. i d 500v 0.087? 170ns 46a features and benefits ? 

 
 


 
   


   ?  
 

 



  ? 
!
  

 
  ? "
 
  
 

 
     applications ? 
  
 
#$ ? % 


$ 
 ? &   
$ 
 ? # 
'   
   absolute maximum ratings parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 46 i d @ t c = 100c continuous drain current, v gs @ 10v 29 a i dm pulsed drain current  180 p d @t c = 25c power dissipation 540 w linear derating factor 4.3 w/c v gs gate-to-source voltage 30 v dv/dt peak diode recovery dv/dt  25 v/ns t j operating junction and -55 to + 150 t stg storage temperature range c soldering temperature, for 10 seconds 300 (1.6mm from case ) diode characteristics symbol parameter min. typ. max. unit s conditions i s continuous source current ??? ??? 46 mosfet symbol (body diode) a showing the i sm pulsed source current ??? ??? 180 integral reverse (body diode)   p-n junction diode. v sd diode forward voltage ??? ??? 1.5 v t j = 25c, i s = 46a, v gs = 0v  t rr reverse recovery time ??? 170 250 ns t j = 25c, i f = 46a ??? 220 330 t j = 125c, di/dt = 100a/s  q rr reverse recovery charge ??? 705 1060 nc t j = 25c, i s = 46a, v gs = 0v  ??? 1.3 2.0 t j = 125c, di/dt = 100a/s  i rrm reverse recovery current ??? 9.0 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) pd- 93923c
IRFPS40N50L 2 www.irf.com   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   starting t j = 25c, l = 0.86mh, r g = 25 ? , i as = 46a. (see figure 12).  i sd 46a, di/dt 367a/s, v dd v (br)dss , t j 150c.   pulse width 400s; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . c oss eff.(er) is a fixed capacitance that stores the same energy as c oss while v ds is rising from 0 to 80% v dss . static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 500 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.60 ??? v/c r ds(on) static drain-to-source on-resistance ??? 0.087 0.100 ? v gs(th) gate threshold voltage 3.0 ??? 5.0 v i dss drain-to-source leakage current ??? ??? 50 a ??? ??? 2.0 ma i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 r g internal gate resistance ??? 0.90 ??? ? dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 21 ??? ??? s q g total gate charge ??? ??? 380 q gs gate-to-source charge ??? ??? 80 nc q gd gate-to-drain ("miller") charge ??? ??? 190 t d(on) turn-on delay time ??? 27 ??? t r rise time ??? 170 ??? ns t d(off) turn-off delay time ??? 50 ??? t f fall time ??? 69 ??? c iss input capacitance ??? 8110 ??? c oss output capacitance ??? 960 ??? c rss reverse transfer capacitance ??? 130 ??? c oss output capacitance ??? 11200 ??? pf v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance ??? 240 ??? v gs = 0v, v ds = 400v, ? = 1.0mhz c oss eff. effective output capacitance ??? 440 ??? c oss eff. (er) effective output capacitance ??? 310 ??? (energy related) avalanche characteristics symbol parameter typ. units e as si n gl e p u l se a va l anc h e e ner g y  ??? mj i ar a va l anc h e c urrent   ??? a e ar repetitive avalanche ener g y  ??? mj thermal resistance symbol parameter typ. units r jc junction-to-case ??? r cs case-to-sink, flat, greased surface 0.24 c/w r ja junction-to-ambient ??? v ds = v gs , i d = 250a v ds = 500v, v gs = 0v v ds = 400v, v gs = 0v, t j = 125c conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 28a  v gs = 30v f = 1mhz, open drain conditions v ds = 50v, i d = 46a v gs = -30v i d = 46a v ds = 400v v gs = 10v, see fig. 7 & 15  v dd = 250v i d = 46a r g = 0.85 ? v gs = 10v, see fig. 14a & 14b  v gs = 0v v ds = 25v ? = 1.0mhz, see fig. 5 46 54 max. 920 v gs = 0v,v ds = 0v to 400v  40 max. 0.23 ???
IRFPS40N50L www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.01 0.1 1 10 100 1000 0.1 1 10 100 20s pulse width t = 25 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 0.1 1 10 100 1000 0.1 1 10 100 20s pulse width t = 150 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 0.1 1 10 100 1000 4 5 6 7 8 9 10 11 v = 50v 20s pulse width ds v , gate-to-source voltage (v) i , drain-to-source current (a) gs d t = 25 c j t = 150 c j -60 -40 -20 0 20 40 60 80 100 120 140 160 0.0 0.5 1.0 1.5 2.0 2.5 3.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 47a
IRFPS40N50L 4 www.irf.com fig 5. typical capacitance vs. drain-to-source voltage 1 10 100 1000 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 1000000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd fig 8. typical source-drain diode forward voltage 0.1 1 10 100 1000 0.2 0.7 1.2 1.7 2.2 v ,source-to-drain voltage (v) i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 150 c j fig 7. typical gate charge vs. gate-to-source voltage 0 100 200 300 400 0 5 10 15 20 q , total gate charge (nc) v , gate-to-source voltage (v) g gs i = d 47a v = 100v ds v = 250v ds v = 400v ds 0 100 200 300 400 500 600 v ds, drain-to-source voltage (v) 0 5 10 15 20 25 30 35 40 e n e r g y ( j ) fig 6. typ. output capacitance stored energy vs. v ds
IRFPS40N50L www.irf.com 5 fig 10a. switching time test circuit v ds 90% 10% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms   
 1     0.1 %          + -   fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 0.001 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 25 50 75 100 125 150 0 10 20 30 40 50 t , case temperature ( c) i , drain current (a) c d
IRFPS40N50L 6 www.irf.com fig 14b. unclamped inductive waveforms t p v (br)dss i as fig 14a. unclamped inductive test circuit r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -   fig 15a. gate charge test circuit fig 15b. basic gate charge waveform fig 12. maximum safe operating area 1 10 100 1000 10 100 1000 operation in this area limited by r ds(on) single pulse t t = 150 c = 25 c j c v , drain-to-source voltage (v) i , drain current (a) i , drain current (a) ds d 10us 100us 1ms 10ms fig 13. maximum avalanche energy vs. drain current 25 50 75 100 125 150 0 500 1000 1500 2000 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 21a 30a 46a
IRFPS40N50L www.irf.com 7 p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - fig 16. for n-channel hexfet   power mosfets    
     
              ?     ?  ?    !" ## ? $  
%! !%   ?  &' !  ? ( !)  ?  &* ! %!    
IRFPS40N50L 8 www.irf.com super to-247ac package outline 
         b ? 1.60 [.063] 12 0.25 [.010] b a 3 0.13 [.005] 2.35 [.092] 1.65 [.065] 2.15 [.084] 1.45 [.058] 5.50 [.216] 4.50 [.178] e e 3x 1.60 [.062] 1.45 [.058] 16.10 [.632] 15.10 [.595] 20.80 [.818] 19.80 [.780] 14.80 [.582] 13.80 [.544] 4.25 [.167] 3.85 [.152] 5.45 [.215] 1.30 [.051] 0.70 [.028] 13.90 [.547] 13.30 [.524] 16.10 [.633] 15.50 [.611] 4 0.25 [.010] b a 4 3.00 [.118] 2.00 [.079] a 2x r max. section e-e 2x 1.30 [.051] 1.10 [.044] 3x 1. dimens ioning and t ole rancing per as me y14.5m-1994. 2. dimensions are shown in millimeters [inches] 3. controlling dimension: millimeter not es: 4. outline conforms to jedec outline to-274aa 3 - s ource 2 - drain 1 - gat e 4 - drain 3 - emitter 4 - collect or 1 - gat e 2 - collect or l e ad as s i gnme nt s mos f e t igbt c data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 07/03


▲Up To Search▲   

 
Price & Availability of IRFPS40N50L

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X